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Note 

Nonphysical Self Forces in Some Electromagnetic 
Plasma-Simulation Algorithms 

This note describes a simple algorithm for removing nonphysical self forces 
from two popular electromagnetic plasma simulation models. This algorithm also 
has two additional features; it is expected to reduce short-wavelength noise and 
unwanted numerical fluctuations and permits faster integration of the particle 
orbit equations by roughly a factor of two. It is currently being included in the 
CLYRAD code [ 1,2]. 

There are three major numerical models in which electromagnetic radiation 
fields are self-consistently coupled to the Lorentz-Newton equations for the 
charged-particle motion. The first of these, proposed by Buneman [3], includes an 
explicit leapfrog algorithm for solving the Maxwell equations and a special charge- 
current algorithm, based on the NGP (Nearest Grid Point) particle interpolation, 
which ensures that the continuity equation for charge and current is automatically 
satisfied at each timestep in finite-difference form. The second of these three 
algorithms [l] uses essentially the same field treatment but has a more flexible 
treatment of current accumulation in which, however, a Poisson equation must be 
solved. The third algorithm [l] differs from the first two in the treatment of the 
electromagnetic fields. Rather than a finite difference approximation to the Maxwell 
equations, the algorithm solves the Fourier transform of the equations in k-space. 
This third algorithm has not been implemented in multidimensions, but a fore- 
runner method in one dimension was devised by Langdon and Dawson [4]. 

Many variations of the first two algorithms are possible and several have been 
coded and used [5, 61. Two of these are the Morse-Nielson algorithms A and B. 
Their algorithm A is an important generalization of Buneman’s algorithm to the 
PIC (particle-in-cell) linear interpolation [8,9]. This algorithm also satisfies 
Poisson’s equation automatically at every timestep. The Morse-Nielson algorithm 
B, as pointed out by Langdon [7], is essentially equivalent to the Boris algorithm. 
Thus, our comments apply to the Boris algorithm used in CYLRAD, to both 
Morse-Nielson algorithms and to the Sinz [5] algorithm. 

These electromagnetic algorithms treat particles moving on staggered, interlaced 
grids of variables as shown in Fig. 1 for two dimensions. Each field variable is so 
positioned that the time-dependent Maxwell equations reduce to an extremely 
simple, finite-difference form for advancing E and B which is reversible and 
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FIG. 1. The staggered-interlaced grids of a 20 electromagnetic simulation code. In three 
dimensions the E, , JS , B,,, , and By grids are all displaced half a cell, 6z/2 out of the plane of the 
b. 

second-order accurate. The generalization of this 2D field-variable arrangement to 
3D is straightforward and the specialization to 1D is trivial. As can be seen, the 
finite-difference form of the divergence equation which should be satisfied at 
each cycle is 

(W + ii , 8 - &(i - t ,j)) + b%(i, j + 8) sy E,(i, j - +I) = 4~~(i,j). 
6x 

cl) 

The electrostatic fields which result from placing a particle at rest on the (i,j) grid 
point are different from those found in an electrostatic code because the x and y 
electric field grids are displaced, as seen in Fig. 1, by 8x/2 and Q/2, respectively, 
from the positions they would occupy in a standard electrostatic code [8,9]. To 
simplify the analysis, the electrostatic and the electromagnetic grids are compared 
in Fig. 2 for a 1D case where a test particle of unit charge is at position LY off a grid 
point (0 < a: < 6x12 = l/2). 

Consider first the electromagnetic grid as used in current simulation codes 
(Fig. 2). The linearly interpolated charge density at grid points 0 and 1 are 
p(O) = 1 - a! and p(l) = 01. If &El,, , fE,,, are defined to be the electric field 
at x = &l/2 and x = f3/2, respectively, due to a unit charge at x = 0, then 
summing the contributions from the two grid points one gets 

Ed-W = -(I - 4 &/, - o&,2, 
KcW2) = (1 - 4 J-G/z - a&/2 9 (2) 
Ed3m = (1 - 4E2/2 + =%12 * 
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FIG. 2. Comparison of grids for standard electromagnetic and standard electrostatic al- 
gorithms in 1D. The staggered electromagnetic grid has electric fields defined at points half a cell 
removed from the points of chargedensity definition. 

Since the particle lies between &Q/2) and &(-l/2), the linearly interpolated x 
electric field, as would be found by an electromagnetic simulation code, is 

&Cd = (l/2 + 4 Jw/2) + (l/2 - 4 &C-W) 

= Ml - wcJ% - @I,, + J%,3/41 # 0. (3) 

Equation (3) shows that the self electrostatic field of a single simulation particle 
is nonzero. Thus, all sorts of spurious effects can result. Figure 3, shows a 1D plot 
of the equivalent potential a particle would see due to its self-force. We have carried 
out tests on an electromagnetic code, and the oscillations of a particle in this self 
field have been observed. The preceeding analysis has been generalized to electro- 
static and magnetostatic self-forces in two and three dimensions. In every case the 
results are the same; spurious electrostatic and magnetostatic forces are found when 
the charges do not exactly lie on grid lines. We know that there are no self forces 
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FIG. 3. The electrostatic self potential of a particle on a staggered 1D electromagnetic grid. 
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in the usual electrostatic codes [8, 91 and the electrostatic-code field in Fig. 2 are 
clearly closely related to the electromagnetic-code fields. Therefore, it should be 
a simple matter to eliminate the electrostatic self-forces from the electromagnetic- 
code. From Fig. 2 we have 

and 

&W-3 = P(l) - @weal (4) 

Ez(0) = [Q(l) - @(-1)/6X]. (5) 

The fields are, therefore, related by 

Ez(0) = 1/2[J%(1/2) + &-WI* (6) 

If we linearly interpolate to the particle position using the averaged fields of 
Eqs. (6) and (2), we get 

Ed4 = (1 - 4 K&9 + o&(l) 

= 0. (7) 

This is the desired result of zero self force. When generalized to two and three 
dimensions, the electrostatic and magnetostatic self forces are found to be zero. 
Furthermore, since the argument is basically one of symmetry rather than being 
based on any particular force law, the determination of Q(i) from p(i) admits all 
finite-sized particle algorithms as well as the 3, 5, and 7 point Poisson operators 
found in one, two, and three dimensions. 

The averaging algorithm developed here for fully electromagnetic simulations in 
two dimensions is an obvious extension of Eq. (6) to the field-variable layout shown 
in Fig. 1. The three components of particle current density J,p(i,j), J,“(i,j) and 
J,p(i,j) are all found by linear interpolation onto the (i,j) grid, exactly as p(i,j). 
The current densities for use on the interlaced field grids are then computed as 
foJlows: 

J& + 1/2,j) = W[J2(i,j) + J,“(i + ldl, 
J,(i,j + l/2) = 1/2[J,*(i,j) + J,%j + 111, (8) 

J&j) = J,“(i,j). 

The six field components, E, , E, , E, , B, , B, , and B, are then all integrated 
exactly as prescribed by the staggered-leapfrog algorithm. These field components 
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are, however, averaged back to the particle grid before being used to advance the 
particle equations of motion. Thus, 

~F,~(i,j) = 1/2[E,(i + l/2, j) + -KG - K731, 
Egp(i, j) = 1/2[E,(i, j + l/2) + E,(i, j - l/2)1, 
Eptj,j) = Wd, 
B,p(i,j) = 1/2P,(i,j + l/2) + U&j - l/2)1, (9) 
Bvp(i,j) = 1/2P,(i + l/U) + 4tj - W,j)l, 
Bsp(i, j) = 1/4[B,(i + l/2, j + l/2) + B,(i + l/2, j - l/2) 

+ B,(i - l/2, j + l/2) + B,(i - l/2, j - l/2)]. 

The original fields E and B are retained unchanged, however, for use in the next 
cycle to advance Maxwell’s equations. They are not to be computed as averages 
of the particle fields Ep and BP. 

The averaging at a boundary is straight forward. One uses the value of the field 
in the cell just across the boundary. This value is, of course, determined by the 
type of boundary condition specified. For example, for a perfect conductor where 
the perpendicular component of the electric field is specified on a point one half 
cell from the wall, the value of the field on the image cell one half grid space into 
the wall is the same and the averaging is preformed exactly as specified previously. 

The immediate consequence of adding the averaging stages given by Eqs. (8) 
and (9) to standard fully electromagnetic codes is the removal of nonphysical 
electrostatic and magnetostatic self forces. There are two other favorable and 
important consequences. First, the averages required are smoothing operations; 
therefore, spurious numerical Cherenkov radiation and bremmstrahlung, arising 
mostly at short wavelengths, will be partially suppressed. Second, a sizable simpli- 
fication results since all particle quantities are now defined on a single grid. Only 
one set of bilinear weight coefficients need be found, rather than four, and, thus, 
it is expected that optimized particle integration can be speeded up by at least 
a factor of two. 
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